Info
Course Code PCC303
Semester 5
Category Basic
Points 5
ECTS Units 8
Eclass
Lecturer
Recommended Reading

(1) “QUANTUM MECHANICS ΙΙ”, Stefanos Trahanas, Crete University Press, 2009.
(2) “Quantum Mechanics”, Walter Greiner, Berndt Muller, New York, Springer, 1994.
(3) “Quantum Mechanics”, Eugen Merzbacher, New York, John Wiley & Sons, Inc., 1998.
(4) “Quantum Mechanics: non-relativistic theory”, L.D. Landau, E.M. Lifshitz, Oxford : Butterworth – Heinemann, 1977.
(5) “Introduction to Quantum Mechanics”, David J. Griffiths, Person Prentice Hall, London, 1995.
(6) “Quantum Mechanics”, B.H. Bransden and C.J. Joachain, , Person Prentice Hall, London, 2000.
(7) “Quantum Mechanics”, Nouredine Zettili, Person Prentice Hall New York, John Wiley & Sons, Inc., 2004.
(8) “Applied Quantum Mechanics”, A.F.J. Levi, Cambridge , Cambridge University Press, 2003.
(9) “PROBLEMS IN QUANTUM MECHANICS”, Stefanos Trahanas, Crete University Press, 2005.
(10) “Problems in quantum mechanics” F. Constantinescu and E. Magyari, Oxford, Pergamon Press, 1978.

Course Description

• Matter waves. Schrödinger’s equation.
• Statistical interpretation of wavefunction/quantum mechanics.
• Measurable properties and operators.
• Measurmenet process in quantum mechanics.
• Hermiticity and probability conservation.
• Dynamics of quantum systems.
• Basic postulates of Quantum Mechanics.
• Hermitian, adjoint and unitary operators.
• Matrix representation of operators.
• Time evolution of a quantum system and conservation laws.
• Ehrenfest’s theorems.
• Study of one dimensional scattering. Step potential &Rectangular potential barrier.
• Rectangular piecewise potentials.
• Infinite Square well potential.
• Square well potential.
• δ- function potential well.
• Two level system.
• Harmonic oscillator.
• 2- και 3 dimensiona quantum systems.
• Hydrogen atom.